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Abstract—This paper extends the materials presented in Chap-
ter 7 of a classic textbook “Power System Analysis” [1] used in
EEL 6936 Power Systems II at University of South Florida. This
research examines the effect of automatic voltage regulator (AVR)
and the power system stabilizer (PSS) on the power transfer
level. The system analyzed in this paper includes a synchronous
generator connected to an infinite bus. Their effect on stability is
investigated through plotting eigenvalues of closed-loop transfer
functions along with Routh-Hurwitz stability criterion examina-
tion. Three different models are considered. The basic model
includes a swing equation with one order rotor flux dynamics.
This model is classified as an electromagnetic model (EMT).
Then, the voltage control part is added (EMT+AVR). Finally, the
power system stabilizer is added to the system (EMT+AVR+PSS).
These models are linearized for analysis. Nonlinear simulation
results based on the nonlinear models built in Matlab/Simulink
validate the analysis results.

Index Terms—Infinite bus, linear analysis, non-linear simula-
tion, power level, AVR, PSS.

I. INTRODUCTION

This paper extends the materials presented in Chapter 7 of
a classic textbook “Power System Analysis” [1] used in EEL
6936 Power Systems II at University of South Florida. This
research examines the effect of automatic voltage regulator
(AVR) and the power system stabilizer (PSS) on the power
transfer level. The system analyzed in this paper includes
a synchronous generator connected to an infinite bus. Their
effect on stability is investigated through plotting eigenvalues
of closed-loop transfer functions along with Routh-Hurwitz
stability criterion examination. Three different models are
considered. The basic model includes a swing equation with
one order rotor flux dynamics. This model is classified as an
electromagnetic model (EMT). Then, the voltage control part
is added (EMT+AVR). Finally, the power system stabilizer
is added to the system (EMT+AVR+PSS). These models are
linearized for analysis. Nonlinear simulation results based on
the nonlinear models built in Matlab/Simulink validate the
analysis results.

Steady state analysis normally uses linear models [2]. To
find the power transfer level limit of each model in the
steady state, there are three linear models analyzed, EMT,
EMT+AVR, EMT+AVR+PSS. Different initial rotor angles
represent different power levels. When the required power
is larger than the power transfer level, the system will be
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unstable. Although the analysis uses linear models, the initial
value or operating point calculation requires the non-linear
algebraic equations. Hence, the non-linear algebraic equations
are derived first using the phasor diagram. The dynamic mod-
els are linearized to build the linear models. The stability of
linear models is determined by two ways, closed-loop transfer
function pole location map and Routh Hurwitz. Furthermore,
the simulation section shows the dynamic responses of the
corresponding non-linear models. By comparing the linear and
non-linear results, the power level can be determined and the
effects of AVR and PSS can be verified.

II. LINEAR ANALYSIS

The system considered in this paper is a generator connected
to an infinite bus through a transmission line shown in Fig.
1. The synchronous generator in the system has a salient-pole
rotor and its damper is negligible (iD=iQ=0). It includes rotor
resistance and inductance, rf and Lf . The stator impedance
is represented by the dq components, Ld, Lq , while the stator
resistance is zero. The transmission line is purely inductive,
LL. X is the impedance of the corresponding inductance.

V∞

jXL

E’a

Fig. 1. A generator connected to an infinite bus.

A. EMT model

For EMT model, there are three dynamic variables, transient
stator voltage, |E′a|, stator frequency, ω, and the phase angle
of the stator voltage, δ. The set of differential equations of
ω and δ is named swing equation. Including the differential
equation of |E′a|, the dynamic equations can be expressed by
(1). 

d|E′
a|

dt = (Efd − |Ea|) /T ′do
dω
dt = (Pm − Pe −Dω0(ω − 1))/(2H)
dδ
dt = ω0(ω − 1)

(1)

where T ′do is the transient time constant, Lf

rf
, D is the

damper coefficient and H is proportional to the inertial of the
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generator. Efd, is proportional to the field voltage, vf , and is
a constant input in EMT model. Pm is the mechanical power
or demanded power which is another input of the system with
a small step-change. |Ea| is the stator voltage and Pe is the
electrical power. Both of them can be represented by |E′a|
using phase diagram shown in Fig. 2. Thus, EMT model is
considered as a third-order system.

|Ea| =
X̃d

X̃ ′d
|E′a|+|V∞|

X̃ ′d − X̃d

X̃ ′d
cos(δ) (2)

Pe =
|E′a||V∞|
X̃ ′d

sin(δ) +
|V∞|2

2

(
1

X̃q

− 1

X̃ ′d

)
sin(2δ) (3)

where X ′d is the transient stator impedance in d-axis. X̃ means
this impedance including XL.
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Fig. 2. Phasor diagram.

In the steady state, |E′a| is only related to Efd.

|E′a| = (Efd − V∞ cos(δ))
X̃ ′d

X̃d

+ V∞ cos(δ) (4)

Based on the steady-state equations, all of initial values of the
system can be calculated including |E′a| and Pe, if the initial
value of the phase angle of the stator voltage, δ0, is provided.
A specific δ0 is corresponding to a specific Pe, so δ0 can be
considered as the power level of the system.

Dynamic equations and steady-state equations are employed
to build the non-linear model because they are non-linear. For
the linear analysis of EMT model, all of them have to be
linearized using linear differential equations of variables.

To linearize the dynamic equations, add a small perturba-
tions of ∆δ to δ0 to write the linear differential equation.
Linearizing (2):

∆|Ea| =
∂|Ea|
∂|E′a|

∆|E′a|+
∂|Ea|
∂δ

∆δ

∆|Ea| =
X̃d

X̃ ′d
∆|E′a|+

(
X̃d

X̃ ′d − 1

)
V∞ sin(δ)∆δ

∆|Ea| =
1

k3
∆|E′a|+k4∆δ (5)

Substituting (5) into |E′a| differential equation of (1) to find

the linear relationship between ∆|E′a| and ∆δ,

T ′do
d∆|E′a|
dt

= ∆Efd −
1

k3
∆|E′a|−k4∆δ

∆|E′a| =
k3

(T ′dok3)s+ 1
(∆Efd − k4∆δ) (6)

Using the same way to linearize (3),

∆Pe =
∂Pe
∂|E′a|

∆|E′a|+
∂Pe
∂δ

∆δ

∆Pe =
V∞

X̃ ′d
sin(δ)∆|E′a|+[

|E′a||V∞|
X̃ ′d

cos(δ) + |V∞|2
(

1

X̃q

− 1

X̃ ′d

)
cos(2δ)

]
∆δ

∆Pe = k2∆|E′a|+T∆δ (7)

Linearizing the swing equations by substituting (7) into
them,{

∆ω̇ = (∆Pm − (k2∆|E′a|+T∆δ)−Dω0∆ω)/(2H)

∆δ̇ = ω0∆ω
(8)

Combining them to obtain the second-order transfer function,

2H

ω0
∆̈δ = ∆Pm − k2∆|E′a|−T∆δ −D∆̇δ

(Ms2 +Ds+ T )∆δ = ∆Pm − k2∆|E′a|
∆δ

∆Pm − k2∆|E′a|
=

1

Ms2 +Ds+ T
(9)

After linearizing the dynamic equations of EMT model, its
linearized model is designed using block diagram shown in
Fig. 3. ∆Pm is considered as the input and ∆δ is the output.
Because of the constant Efd in this system, ∆Efd is zero.
Based on Fig. 3, the closed-loop transfer function of this

1

Ms2+Ds+T
k2

K3

1+K3T’dos
ΔEfd

+

-

k4

Δ|E’a|

ΔPM

Δδ +

-

Fig. 3. Block diagram of linearized EMT system.

system can be derived to find the pole locations.

TEM (s) =
1

Ms2 +Ds+ T

TEMT (s) =
TEM (s)

1− TEM (s) ∗ k4 ∗ k3
(T ′

dok3)s+1k2

=
(T ′dok3)s+ 1

(T ′dok3s+ 1)(Ms2 +Ds+ T )− k2k3k4)
(10)

When δ0 is given, the gains and coefficients of TEMT (s)
can be calculated; then, MATLAB code pzplot(TEMT (s)) is
used to plot the pole-zero locations. If there is any pole located
in RHP, the system will be unstable. Therefore, the largest δ0

which makes the system stable can be considered as the power
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level of this system. To find the power level, δ0 is increased
from 0 to 90◦. The increment is 1◦. Based on the closed-loop
transfer function, one value of δ0 will generate three poles.
Fig. 4 plots all of pole locations for the whole range of δ0. It
is observed that when δ0 is over 81◦, the pole aligned on the
real axis is located on RHP, so 81◦ can be considered as the
power level of EMT model.
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Fig. 4. Pole-zero locations of EMT model. From 0◦ to 90◦

The power level, 81◦, also can be verified by the Routh
Hurwitz.

s3 T ′dok
3M T ′dok3T +D 0

s2 T ′dok3D +M T − k2k3k4 0
s1 K1 0
s0 T − k2k3k4

where K1 = T ′dok3T +D− (T ′
dok

3M)(T−k2k3k4)
(T ′

dok3D+M) . Based on the
initial value calculation, K1 is always larger than 0. Therefore,
the sign of T −k2k3k4 determines if the system stable or not.
It is 0.0067 at δ0=81◦ while it is -0.0058 at δ0=82◦.

B. EMT+AVR model

When AVR is added to EMT model, Efd will not be
a constant input, but a variable which is controlled by the
terminal voltage. Efd is generated by an exciter, so the input
of the exciter is the error between the terminal voltage, Va, and
its reference, Vref . Certainly, Va is dependent on the demanded
power, Pm or δ0. Before linearizing the system, the equations
for calculating the initial values of EMT+AVR model should
be derived.

If the power factor and δ0 are provided, the stator current,
Ia, can be calculated because V∞ is constant. In this paper,
reactive power, Q, is zero, so power factor is 1 and Ia is
aligned on V∞.

a′ = V∞ + jX̃qIa

Ia =
V∞ ∗ tan(δ)

X̃q

(11)

Based on Fig. 2, Ea can be expressed by Ia, V∞, and δ0.

In addition, Efd is equal to Ea in steady state (1).

Ea = Vq − X̃dIad

Ea = V∞ cos(δ0) + X̃dIa sin(δ)

Efd = |Ea| (12)

If Efd is calculated, |E′a| is obtained (4); then, the terminal
voltage is calculated by |E′a| [1].

Vaq =
XL

X̃ ′d
|E′a|+

X ′d

X̃ ′d
V∞ cos(δ)

Vad = −Xq

X̃q

V∞ sin(δ)

|Va| =
√

(Vad)2 + (Vaq)2

Vref =
Efd
kA

+ |Va| (13)

where kA is the amplify gain. In this paper, its value is 25.
Before linearizing the EMT+AVR model, there are two

assumptions which are made to simplify the model. It is
assumed that the voltage control system is very fast, so the
time constant of the control loop is zero; the exciter is assumed
as a pure gain, Ge(s) = kA.

Because Efd is not a constant in EMT+AVR model and it
is controlled by |Va|, Va has to be linearized by two variables,
|E′a| and δ.

∆|Va| =
∂|Va|
∂δ

∆δ +
∂|Va|
∂δ

∆|E′a|

∆|Va| = −|V∞|

(
X ′dVaq

X̃ ′d|Va|
sin(δ) +

XqVad

X̃q|Va|
cos(δ)

)
∆δ

+
XLV

0
aq

X̃ ′d|Va|0
∆|E′a|

∆|Va| = k5∆δ + k6∆|E′a| (14)

After adding the linearized AVR part to EMT model, Fig.
5 shows the block diagram of EMT+AVR model. ∆Pm is the
input, ∆δ is the output, and ∆Vref is normally zero.

1

Ms2+Ds+T
k2

k3

1+k3T’dosΔEfd

+

-

k4

Δ|E’a|

ΔPM

Δδ +

-

k5

k6

kA
Δve

+

+

ΔVref

+

Δ|Va|

-

Fig. 5. Block diagram of linearized EMT+AVR system.

To reduce Fig. 5 to a single loop, the feedback transfer
function is derived first.

∆|E′a| =
k3

T ′dok3s+ 1
[−k4∆δ − kA(k5∆δ + k6∆|E′a|)]

∆|E′a|
∆δ

=
−k3(k4 + kAk5)

T ′dok3s+ k3kAk6 + 1

= − 1

k2

a

bs+ c
(15)
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where a = k2k3(k4 + kek5), b = k3Tdo, c = k3kek6 + 1.
Using (15) to derive the closed-loop transfer function:

TAV R(s) =
TEM (s)

1− TEM (s) ∗ a
bs+c

=
bs+ c

(Ms2 + +Ds+ T )(bs+ c)− a

=
bs+ c

Mbs3 + (Db+Mc)s2 + (Tb+Dc)s+ Tc− a
(16)

Theoretically, EMT+AVR system will be unstable if sup-
plying a high active power. It is determined by the same way,
Pole-zero location. Based on TAV R(s), there are three poles
and one zero with a specific δ0. For observing and analyzing
easily, Fig. 6 only shows the poles crossing the jω axis and the
range of δ0 is from 40◦ to 89◦. It’s observed that the thirteenth
pole is on RHP, so the power level of EMT+AVR model is
51◦. This also can be proved by Routh Hurwitz.
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Fig. 6. Pole-zero locations of EMT+AVR model. From 40◦ to 89◦

s3 Mb Tb+Dc 0
s2 Db+Mc Tc− a 0
s1 K2 = Tb+Dc− (Mb)(Tc−a)

Db+Mc 0
s0 Tc− a

Based on the calculation, K2 is 0.0037 at δ0=51◦ while it is
-0.0027 at δ0=52◦. Tc − a is always larger than 0. Although
AVR part can make the system supply more power, it also
reduces δ0 of the system.

III. EMT+AVR+PSS

To solve the samll δ0 of EMT+AVR model, PSS part is
added to stabilize the system. Using linear analysis, PSS
provides two zeros near the original point and one pole to
change the root locus of EMT+AVR model, so the block
diagram of EMT+AVR+PSS model should be like the figure
in Fig. 7.
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Ms2+Ds+T
k2

k3

1+k3T’dosΔEfd

+

-

k4

Δ|E’a|

ΔPM

Δδ +

-

k5

k6

kA
Δve

+

+

ΔVref

+

Δ|Va|

-

γs

1+τs
s

+

Fig. 7. Block diagram of linearized EMT+AVR+PSS system.

Using the same to derive the closed-loop transfer function
of EMT+AVR+PSS model. The feedback transfer function is:

∆|E′a| =
k3

T ′dok3s+ 1

[
ke

(
γs2

τs+ 1
∆δ − k5∆δ − k6∆|E′a|

)]
− k3
T ′dok3s+ 1

k4∆δ

∆|E′a|
∆δ

=
k3keγs

2 − τk3(k5ke + k4)s− k3(k5ke + k4)

τT ′dok3s
2 + (τk3k6ke + τ + T ′dok3)s+ k3k6ke + 1

∆|E′a|
∆δ

=
1

k2

fs2 − τas− a
τbs2 + es+ c

(17)

where γ and τ are the coefficients of PSS. e = τk3k6ke+τ +
T ′dok3 and f = k3keγk2. The closed-loop transfer function is
written:

TPSS(s) =
TEM (s)

1 + TEM (s) fs
2−τas−a

τbs2+es+c

=
τbs2 + es+ c

(Ms2 +Ds+ T )(τbs2 + es+ c) + fs2 − τas− a
(18)

Factoring the denominator of TPSS(s): Mτbs4 + (Me +
Dτb)s3+(Mc+De+Tτb+f)s2+(Dc+Te−τa)s+(Tc−a).
Based on Fig. 8, PSS makes the poles near jω axis locate
on LHP when δ0 is increased from 1◦ to 89◦. Because δ0

cannot be 90◦ and the increment is 1◦, the power level can be
considered to approaching 90◦. Using Routh Hurwitz to prove
it:

s4 Mτbs Mc+De+ Tτb+ f Tc− a 0
s3 Me+Dτb Dc+ Te− τa 0 0
s2 K3 Tc− a 0
s1 K4 0
s0 Tc− a

where K3 == Mc+De+Tτb+f− (Mτb)(Dc+Te−τa)
Me+Dτb , K4 =

Dc + Te − τa − (Me+Dτb)(Tc−a)
K3

. Based on the calculation,
K3 and K4 are always larger than 0.

IV. SIMULATION RESULTS FROM NON-LINEAR MODELS

To verify the results from the linear models, the corre-
sponding non-linear models are designed and simulated in
MATLAB/Simulink. The screen copy is shown in Fig. 9. The
model building exploits the vector feature of MATLAB. For
example, the output of the integrator is the vector of the three
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Fig. 9. Matlab/Simulink simulation blocks.
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Fig. 8. Pole-zero locations of EMT+AVR+PSS model. From 1◦ to 89◦

state variables E′a, δ, ω. The input of the integrator comes
from computation of their derivatives, which is also a vector.
In addition, the embedded MATLAB function also has a vector
as input and a vector as an output. Therefore, mux and demux
blocks are frequently used in this model building. Such model
building technique has been detailed documented in [3] to
build an induction machine. The model building technique
has been applied in variety of system building, e.g., a doubly
fed induction generator with square wave input from rotor
[4], wind farm series compensated interconnected system for
subsynchronous resonance analysis [5]. This technique leads
to a very concise expression.

The non-linear models are based on the differential equa-

TABLE I
PARAMETER OF THE SYSTEM.

Table 1
Parameter Values Value(p.u.)
Rating Power 835MVA 1
Line to line Voltage 26kV 1
Speed 3600r/min 1
Xd, Xq 0.8096Ω, 0.5667Ω 1, 0.7
rf , Xfd 0.00011Ω,0.0810Ω 0.05, 0.1
XL, X′d 0.4048Ω, 0.1619Ω 0.5, 0.2
H 5.6s 5.6 s.pu.

tions (1). Before simulating non-linear models, the initial
values should be calculated; then giving a small step change
in Pm to check the system’s stability.

For EMT model, the required initial values are three dy-
namic variables, E′a, δ, ω, one input with step change, Pm,
and two constant inputs, Efd, V∞. Because of the synchronous
generator, ω should be 1p.u. at steady state. Efd and V∞
are set as 1p.u. δ should be δ0 to find the power level. E′a
and Pm are calculated based on (12), (3). The generator’s
parameters are list in Table1. Although EMT+AVR model
and EMT+AVR+PSS model have different block diagrams of
linear models, the initial value calculations are the same. For
EMT+AVR model, ω and V∞ are still 1p.u. but Vref replaces
Efd as the constant input of the system. E′a, Pm and Vref are
calculated by (3)-(4), (11)-(14).

A. EMT model

Based on the linear analysis, the power level of EMT model
is 81◦, so the initial value of δ0, is set as 81◦ and one more
degree than the power level, 82◦. To avoid that a large step
change will cause the system unstable, there is 0.00001p.u.
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power added to Pm at 2s. Fig. 10 shows the step response of
one dynamic variable, δ. Although δ responses very slowly in
both of situation, it is obviously that δ is approaching a steady
state at δ0 = 81◦ while it rises faster and faster at δ0 = 82◦.
Hence, it is proved that the power level of EMT model is
δ0 = 81◦. In addition, the pole which is very closed to jω
axis does not have the imaginary part based on Fig. 4, so the
step response of δ does not have the oscillation. Fig. 10 also
proves this point.
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Fig. 10. The step response of δ in EMT model. Upper plot: δ0=81◦; lower
plot: δ0=82◦.

B. EMT+AVR model

For the obvious difference, δ0 has two initial values, 51◦

and 55◦. The step change in Pm of EMT+AVR model is not
very sensitive, so the step change is 0.01p.u. and happens at
2s. Based on Fig. 11, although the step response of δ has a
large oscillation in two plots, it is observed that the oscillation
is becoming smaller at δ0 = 51◦ while it is becoming larger
at δ0 = 55◦. The reason causing the damping is that the pole
which crosses jω axis has an imaginary part in EMT+AVR
model. Therefore, Fig. 11 does not only prove that the power
level of EMT+AVR model is 51◦, but also proves which pole
causes the system unstable.
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Fig. 11. The step response of δ in EMT+AVR model. Upper plot: δ0=51◦;
lower plot: δ0=55◦.

C. EMT+AVR+PSS model

It is already known that EMT+AVR+PSS model is always
stable when δ0 is under 90◦, so it is only required to check
the stability of the system at δ0 = 89◦. The step change is
still 0.01p.u. at 2s. Fig. 12 shows that the system is stable at
δ0 = 89◦ and the step response is very fast. It proves that the
power level of EMT+AVR+PSS model is 89◦ and PSS provide
a supplemental damping to cancel the oscillations from AVR.
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Fig. 12. The step response of δ in EMT+AVR+PSS model. δ0=89◦.

V. CONCLUSION

This paper uses the linear analysis to find the power level of
the typically power system, a synchronous generator connected
to an infinite bus. Moreover, it determines the power levels
of this system which is added by the voltage control, AVR,
and the stabilizer, PSS. The simulation results of the non-
linear models verify all of three power levels analyzed from
the linear models. After the analysis and the verification, there
are three points concluded. One is that the power level of this
system cannot be equal or larger than 90◦. The second is that
although AVR can make the generator supply more power, the
power transfer angle is its shortage. It means that if there is
a large active power transfered, the system will be unstable.
Last point, PSS is very useful to stabilize the system when
there is higher power required to transfer. Finally, a complete
power generation system should include both of AVR and PSS
parts.
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